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The problem of locating stagnation points in the flow produced by a system of N
interacting point vortices in two dimensions is considered. The general solution follows
from an 1864 theorem by Siebeck, that the stagnation points are the foci of a certain
plane curve of class N®1 that has all lines connecting vortices pairwise as tangents. The
case N¯ 3, for which Siebeck’s curve is a conic, is considered in some detail. It is
shown that the classification of the type of conic coincides with the known classification
of regimes of motion for the three vortices. A similarity result for the triangular
coordinates of the stagnation point in a flow produced by three vortices with sum of
strengths zero is found. Using topological arguments the distinct streamline patterns
for flow about three vortices are also determined. Partial results are given for two
special sets of vortex strengths on the changes between these patterns as the motion
evolves. The analysis requires a number of unfamiliar mathematical tools which are
explained.

1. Introduction

There appear to be relatively few general results on the number, location and
motion of stagnation points even in simple flows. Here we consider the stagnation
points in two-dimensional flow on the unbounded plane produced by a system of N
point vortices of arbitrary circulations.

It is well known that for point vortices the centre of vorticity remains fixed in time.
A similar result holds for any vorticity distribution: If ζ(x, y, t) is the vorticity in two-
dimensional ideal flow, the linear impulse,

P¯&& ζxdx, (1.1)

is conserved (cf. Lamb 1932). If the total vorticity is non-zero, this leads to the
invariance of the centroid of the vorticity distribution:

X¯&& ζxdx}&& ζdx. (1.2)

This invariance might lead one to believe that a fluid particle placed at X will remain
stationary, in other words that there is always a stagnation point of the flow at X. For
certain simple cases, such as the motion of two identical vortices, this is true and
follows from symmetry considerations. However, in general X is not a stagnation
point.
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Consider two point vortices of unequal circulations, Γ
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#
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complex z¯xiy plane. The equations of motion for the vortices are
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(here and in the following overbars denote complex conjugation). It follows from (1.3),
as a special case of (1.2), that the centre of vorticity,
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is constant in time. The fluid velocity (u, �) at z
V

is given by
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from which we see that only in the case Γ
"
¯Γ

#
will z

V
be a stagnation point.

A stagnation point, z
S
, in the flow must satisfy the equation
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i.e. be given by
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(which should be read to imply that there is no finite stagnation point for Γ
"
¯®Γ

#
).

Consider the geometrical midpoint of the line segment joining vortices 1 and 2:
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We have
z
M

¯ "

#
(z

S
z

V
). (1.9)

Hence, the stagnation point and the centre of �orticity are symmetrically placed with
respect to the midpoint of the line joining the �ortices. It follows from this that the
stagnation point moves in a circle about the centre of vorticity, as do the two vortices.

Although this example is entirely elementary, it serves to sensitize us to the problem
at hand. Stagnation points are important for the understanding of advection of a
passive scalar by the flow, and in the case of distributed vortices even for the dynamical
evolution of the flow itself. Any information that we can obtain about their number,
location and motion is very worthwhile.

In this paper we study one of the simplest cases – the flow due to an assembly of
point vortices of arbitrary circulations. Even with this restriction a considerable
amount of work must be done before results of any generality emerge. For point
vortices the problem of locating stagnation points reduces to finding the roots of a
certain polynomial. In practical terms finding such roots at any instant in time by
numerical calculation is not a particularly difficult problem, at least not for moderate
N. However, our objective is to derive general results, valid as the motion unfolds, and
to understand the parametric dependence of the number, nature and location of
stagnation points as the vortex circulations are varied. We state the problem in §2, and
deduce a first, simple result. In §§3–4 we explain and explore a geometrical
characterization of stagnation points as the foci of a certain curve. These developments



Stagnation points and streamline topology in �ortex flows 3

(a) (b)

F 1. Three vortices, Siebeck curve, and separatrix streamlines of the flow. (a) Identical vortices
(Siebeck’s curve is an ellipse) ; (b) vortices of circulation 2, 2, ®1 (Siebeck’s curve is a hyperbola).

arise from geometrical theorems of Julius Plu$ cker and his followers, notably an 1864
theorem by Siebeck. Because of the use of less familiar mathematical concepts, such as
the complex projective plane, we devote §3 to a brief ‘ tutorial ’ on background material
that is needed for Siebeck’s theorem. In §4 we return to vortex dynamics and explore
the case of flow due to three vortices on the unbounded plane in some detail. In §5 we
take up a complementary approach in which we classify the pattern of streamlines in
the flow about the three vortices using topological arguments. This approach is
independent of the projective geometry of §§2–4. Taken together the results of the
earlier sections on stagnation points and of §5 on streamline topology give the most
comprehensive results on the flow pattern about a system of vortices that we have been
able to find.

Figure 1 illustrates the inter-relation of the two thrusts of our analysis. In (a) we
show three identical vortices, at some instant located at the vertices of the triangle
shown. Inscribed in this triangle is an ellipse, which is the curve that arises in
Siebeck’s theorem for this case. The two foci of this ellipse are the stagnation points
of the flow field produced by the three vortices. These aspects of figure 1(a) illustrate
the developments through §4 below. Also shown is the pattern of instantaneous
streamlines of the flow. The topology of this streamline pattern is one of the 12
determined in §5 (see figure 6a). The stagnation points are self-intersection points for
the streamlines. In the last part of §5 we give results on the changes in streamline
topology that occur as the motion of the vortices unfolds. A complete solution of this
bifurcation problem for arbitrary vortex strengths is quite involved, and is not
accomplished in this paper.

Figure 1(b) gives a similar diagram for the case of three vortices with circulations
Γ

"
:Γ

#
:Γ

$
¯ 2:2: (®1). Siebeck’s curve for this case is a hyperbola that has all three

sides of the vortex triangle as tangents. The stagnation points of the flow are the two
foci of this hyperbola. Also shown in figure 1(b) are the separatrix streamlines, which
form the pattern shown in figure 6(c).

For the case of three identical vortices the inscribed ellipse with foci at the stagnation
points of the flow is known in geometry as the Steiner ellipse, and may be approached
in a more elementary way than through the general theory. We refer the reader to
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Schoenberg’s (1982) book (in particular Chap. 7, §4). Schoenberg quotes and proves
an 1888 theorem by van den Berg (which is a special case of Siebeck’s theorem) for this
case.

The strongest result we have obtained is for the case of three vortices of zero total
strength. There is just a single stagnation point in this case, and we have found a
‘similarity law’ for its location.

In §6 we make some remarks on extensions of the methodology pursued here and
state our main conclusions.

A preliminary account of this work was presented at the Forty-eighth Annual
Meeting of the American Physical Society, Division of Fluid Dynamics, in Irvine, CA
(Aref & Brøns 1995).

2. The general problem

Since the velocity (u, �) induced by a system of N point vortices is of the form
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it follows that the stagnation points are the roots of the polynomial

P(z)¯Γ
"
(z®z

#
)(z®z

$
)… (z®z

N
)

Γ
#
(z®z

"
)(z®z

$
)… (z®z

N
)…

Γ
N
(z®z

"
)(z®z

#
)… (z®z

N−"
). (2.2)

Expanding this in powers of z, the leading terms are
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Thus, if the sum of the vortex strengths does not vanish, there are N®1 roots of the
polynomial, i.e. N®1 stagnation points (although some of these may, of course,
coincide). When the sum of the vortex strengths vanishes, there are at most N®2
distinct stagnation points.

The coefficient of zN−# in (2.3) may be written as
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where z
M

denotes the ‘midpoint ’ or centroid of the positions, defined as

z
M

¯
1

N 3
N

α="

zα, (2.5)

and, when the sum of strengths is non-zero, the centre of vorticity, z
V
, is the discrete

vortex counterpart of (1.2) :

z
V

¯ 3
N

α="

Γα zα}3
N

α="

Γα. (2.6)

The case when both the sum of strengths and the total impulse (which appears as the
numerator of (2.6)) vanish is special : in this case the coefficient of zN−# is zero, and
there are at most N®3 different stagnation points. We remark that the four-vortex
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problem, which is in general non-integrable, is in fact integrable in this special case
(Eckhardt & Aref 1988; Eckhardt 1988). There is then at most one stagnation point in
the flow.

For the case of N vortices we may now write a generalization of (1.9). If we denote
the stagnation points by z(S)

"
,… , z(S)

N−"
, we have
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Expanding and comparing coefficients to (2.3), we see that in general
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Thus, the sum of the �ectors from the midpoint to the stagnation points equals the �ector
from the centre of �orticity to the midpoint. In particular, for identical vortices the
midpoint and the centre of vorticity coincide, and the sum of the vectors from the
midpoint to the stagnation points vanishes. For N¯ 2 (2.9) reduces to (1.9).

Returning to the polynomial P(z) – in the form (2.2) – we see that the problem of
locating the stagnation points of a flow induced by N point vortices is equivalent to the
problem of finding the location in the complex plane of the roots of this polynomial.
The problem of locating the roots of a polynomial given through its coefficients has
spawned a large literature in mathematics, much of which will be unfamiliar. The
monograph by Marden (1949) provides a useful starting point for pursuing this
literature. We were surprised to find that there exists a precise geometrical
characterization of the location of the stagnation points for a system of N vortices as
the foci of a certain explicitly given curve of class N®1 (we shall explain the notion of
the class of a curve in §3) in the plane. The main result goes back to a paper by
F. H. Siebeck (1864). Siebeck’s work is based on the geometry of Julius Plu$ cker
(1801–1868), and utilizes the complex projective plane. The result is re-stated and
elaborated by several later authors. We found the account by Heawood (1906) to be
one of the more useful. The present paper arose in large measure from our attempts to
understand Siebeck’s theorem and its potential utility in determining the stagnation
points of a simple vortex flow.

Siebeck’s theorem is one of the first results in Marden’s book – it is stated and
proved on pp. 9–12 – and is, in fact, related there to the problem of finding the
stagnation points of a system of sources and sinks! While we might simply refer the
reader to Marden (1949), we feel it is appropriate to provide a quick ‘tutorial ’ on the
geometry of the complex projective plane in order to introduce various concepts and
establish our notation, state and prove the theorem, and then proceed to a more
detailed study of special cases. The three-vortex problem, in particular, where the
curves that arise in Siebeck’s theorem are conic sections, deserves further elaboration.
Our main contribution, then, is a detailed discussion of the location of stagnation
points in the three-vortex problem, and the attendant changes in topology that occur
in the streamline pattern as the vortices (and stagnation points) move. There are, as we
shall see, interesting connections to the general classification of three-vortex motion
given many years ago (Synge 1949; Aref 1979). For the case of three vortices with sum
of strengths equal to zero, where we have a very detailed understanding of the motion
due to the work of Rott (1989) and Aref (1989), we are led to a ‘similarity law’ for the
single stagnation point, that would seem difficult to find without the formalism pursued
here. In general we may say that the merit of Siebeck’s theorem is the geometric
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characterization of the stagnation points as a function of the vortex positions and
strengths that it provides. In terms of actual calculation, the extraction of roots of a
low-order polynomial is a relatively trivial procedure, and efficient, direct, numerical
methods for solving this problem can easily be given. We elaborate on this statement
in §6.

It should be stressed that the stagnation points covered by the developments in this
paper are those situated away from the vortices themselves. These are always saddle
points of the streamfunction. (Indeed, because these stagnation points occur in
potential flow, the streamlines must self-intersect at 90° angles.) There are
configurations in which a particular point vortex may remain stationary, and if one
smoothed the point vortex to a (small) finite-area vortex, one could argue that the flow
has a stagnation point at the position of the stationary vortex itself. Such stagnation
points, which are generally elliptic points of the streamfunction, are not captured by
the theory developed here.

3. The complex projective plane and Siebeck’s theorem†

We consider the set of triples of complex numbers (x
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$
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and the set of triples is hereby divided into equivalence classes. The set of equivalence
classes constitutes the complex projecti�e plane P#, the ‘points ’ of which may, thus, be
thought of as ‘rays ’ in C$c²(0, 0, 0)´. Computations in P# are performed on
representatives of the equivalence classes, so when we use terms such as ‘ the point
(x

"
, x

#
, x

$
) ’, we mean the equivalence class that contains (x
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, x

#
, x

$
). The equivalence of

proportional triples implies that the only algebraic expressions that are meaningful are
homogeneous in the coordinates, and thus that during calculations dropping a
common factor is permitted. We shall often designate a coordinate triple (x

"
, x

#
, x

$
)

simply by the symbol (x).
For any point in P# corresponding to a triple (x
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, x

#
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$
) with x

$
1 0, there

corresponds a unique ‘point ’ (x
"
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, x

#
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$
) in the set of complex pairs C#. Thus, P#

contains C#, but also has additional elements, viz. all those triples for which x
$
¯ 0.

These points will be called ideal elements of P# or points at infinity. The usual plane,
R#, viewed either as the complex plane, C, or as the set of real pairs, is contained within
C#. In order to distinguish it from the projective plane, we shall refer to R# as the affine
plane. It will be useful to consider statements of analytical geometry in the affine plane
– which is where our vortices and stagnation points ultimately reside – as statements
about entities in P#, to perform various manipulations in P#, and then to interpret the
results in the affine plane. We need next to familiarize ourselves with the geometry in
P#, and to see how to translate results back and forth between R# and P#.

3.1. Lines

In R# a line is given by an expression of the form

axbyc¯ 0, (3.1)

† The mathematical apparatus developed here was treated by numerous authors in texts on
algebraic geometry of the last century, e.g. Salmon (1854), Ferrers (1866). These treatments are, in
principle, elementary, yet often appear rather inaccessible. Modern treatments, on the other hand, are
often phrased in such general mathematical terms as to be difficult to use for purposes of practical
calculation. An important exception is Chap. 12 of the book by Coxeter (1993), where much of the
classical material is summarized using modern notation and point of view.
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where x and y are the usual Cartesian coordinates of a variable point and a, b, c are
certain numbers determining the line in question. Setting x¯x
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, y¯x

#
}x

$
, and

multiplying through by x
$
, we obtain an equation of the form
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as the equation for a line in P# (where x
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now are allowed to be complex).

Note that this expression is, indeed, homogeneous in the coordinates. The points on the
line are those triples (x
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$
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above) for which the equation is satisfied. It is, therefore, natural to think of the triple
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] as characterizing the line, and we call this triple the coordinates of the line.

When we need to make the distinction, we will refer to (x
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). In this way we begin to see the duality of points

and lines in the formulation of geometry in the projective plane P#. All the ideal
elements in P# are on a line with coordinates [0, 0, 1], the ideal line or the line at infinity.

We shall often designate a triple of line coordinates [u
"
, u

#
, u

$
] simply by [u], and we

shall use the convention of summing over repeated indices to write an equation such
as (3.2a) in the form

u
i
x
i
¯ 0. (3.2b)

Two different lines in P# always intersect. To find the point of intersection of
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vanish, precisely when the lines interpreted in R# are parallel.†
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and this is 1 (0, 0, 0) unless (x) and (y) are proportional, i.e. unless they correspond
to the same point in P#. We see the duality between a line through two points and a
point at the intersection of two lines.

3.2. General cur�es: order, class and tangents

Let us consider a general algebraic curve F(x
"
, x

#
, x

$
)¯ 0, where F is some

homogeneous polynomial in its three variables. If F is of degree n, we say that the curve
is of order n. A line in the projective plane will intersect a curve of order n at n points.

† We may also use the notation of vectors in three dimensions, e.g. by thinking of the incidence
relation (3.2) as a ‘scalar product ’ u[x¯ 0, and the intersection of two lines [u] and [�] as being the
point (u¬�). We show in (3.6) that the line connecting (x) and (y) is [x¬y].
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Using the homogeneity of F, namely, F(λx
"
, λx

#
, λx

$
)¯ 0 for any λ, we differentiate

with respect to λ and set λ¯ 1 to obtain

¥F
¥x

i

x
i
¯ 0, (3.7)

or, in ‘vector notation’, x[¡F¯ 0.
On the other hand, the tangent to the curve at (x) is the line connecting (x) to an

infinitesimally close point on the curve (xdx). This line is [u]¯ [x¬dx]. But (xdx)
is also on the curve, so F(xdx)¯ 0¯F(x)dx[¡F… , or dx[¡F¯ 0. It follows
from this and the preceding result, x[¡F¯ 0, that [x¬dx]¯ [¡F ] (recall that a
constant of proportionality may be dropped). Thus, the line [u]¯ [¡F]¯ [¥F}¥x] is the
tangent to the curve at point (x).

We may also consider an expression of the form Φ[u
"
, u

#
, u

$
]¯ 0, where Φ is some

homogeneous polynomial in its three variables. The lines that satisfy this equation will
in general have an envelope, which is a curve in the plane. If Φ is of degree m, we
say that this curve is of class m. Through any point in the projective plane there will
be m tangents to a curve of class m.

Again, by homogeneity

¥Φ
¥u

i

u
i
¯ 0, (3.8)

or u[¡Φ¯ 0.
A point on the curve, (x), arises by finding the intersection of two infinitesimally

close tangents [u] and [udu]. The point of intersection of these two lines is (x)¯
(u¬du). But Φ[udu]¯Φ[u]du[¡Φ…¯0, or du[¡Φ¯ 0. It follows from this
and the preceding result, u[¡Φ¯ 0, that (u¬du)¯ (¡Φ) (a constant of proportionality
may again be dropped). Thus, (x)¯ (¡Φ)¯ (¥Φ}¥u) is the point of tangency of the
tangent [u].

The preceding considerations show us how to get the equation in line coordinates of
a curve given in point coordinates and vice versa. Thus, to get the equation of the curve
Φ[u]¯ 0 in point coordinates, write out the derivative, ¥Φ}¥u, solve the three equations
x¯ ¥Φ}¥u for the u in terms of the x, and substitute the result into Φ[u

"
, u

#
, u

$
]¯ 0.

Similarly, to get the equation of the curve F(x)¯ 0 in line coordinates, write out the
derivative, ¥F}¥x, solve the three equations u¯ ¥F}¥x for the x in terms of the u, and
substitute the result into F(x

"
, x

#
, x

$
)¯ 0.

3.3. Conics

A conic (or conic section) in R# is given by a quadratic polynomial in the coordinates
x and y. Again setting x¯x

"
}x

$
, y¯x

#
}x

$
, and multiplying through by x

$
, we arrive

at a homogeneous quadratic form in x
"
, x

#
, and x

$
. We may write this point conic in

R# as
F(x

"
,x

#
,x

$
)¯ a

ij
x
i
x
j
¯ 0. (3.9)

The conic is singular if the determinant of the symmetric coefficient matrix vanishes.
It is in general a cur�e of order 2. In order to classify the conic we need to consider the

sign of the determinant of the minor 9a""
a
"#

a
#"

a
##

: . The conic is an ellipse, parabola or

hyperbola according to whether this determinant is positive, zero, or negative.
The tangent to the conic at (x) is, according to §3.2, a line with coordinates

u
i
¯ a

ij
x
j
. (3.10)
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If we solve these equations for the x in terms of the u, and then substitute the result
into

u
"
x
"
u

#
x
#
u

$
x
$
¯ 0, (3.11)

we obtain the equation of the conic in line coordinates :

Φ[u
"
, u

#
, u

$
]¯α

ij
u
i
u
j
¯ 0, (3.12)

where α
ij

is the cofactor of a
ij

in the determinant of the matrix ²a
ij
´. Thus, the conic

is also a cur�e of class 2. In general, the order and the class of a curve are not identical.
Plu$ cker established general relations between order, class, and other characteristic
numbers, such as the number of singularities on the curve. For non-singular curves the
relation between order, n, and class, m, is n¯m(m®1). Hence, the order typically
grows much more rapidly than the class. Order and class have the same value for
n¯m¯ 2.

3.4. Circles, circular points at infinity

So far the results obtained have had a pleasing duality between points and lines, but
have not been particularly surprising. Consideration of a circle and its intersections
with the ideal line provides unexpected answers.

Consider a circle in the affine plane

(x®a)#(y®b)#¯ r#. (3.13)

Homogenize the expression as before to obtain

(x
"
®ax

$
)#(x

#
®bx

$
)#¯ (rx

$
)#, (3.14)

a ‘circle ’ in P#. Now consider the intersection of this circle with the line at infinity, i.e.
with points for which x

$
¯ 0. The equation for such points is

x#

"
x#

#
¯ 0. (3.15)

There are two solutions, (1, i, 0) and (1, ®i, 0), regardless of the parameters a, b and
r of the circle. These two points, usually designated I and J, respectively, are called the
circular points at infinity. All circles pass through these two points.

A line is called isotropic if it passes through a circular point at infinity. Thus, except
for the line at infinity, [0, 0, 1], which passes through both I and J, isotropic lines have
coordinates of the form [u

"
, u

#
, u

$
]¯ [1, ³i, u

$
].

3.5. Foci

An ellipse in the affine plane, situated and oriented appropriately, has the equation

x#

a#


y#

b#

¯ 1, (3.16)

with a" b. The two foci are at (³c, 0), where c¯ (a#®b#)"/#. Homogenizing the
equation for the ellipse we find

F(x
"
,x

#
,x

$
)¯

x#

"

a#


x#

#

b#

®x#

$
¯ 0 (3.17)

as the point equation in P#. Using the procedure outlined in §§3.2 and 3.3 we find the
line equation to be

Φ[u
"
, u

#
, u

$
]¯ a#u#

"
b#u#

#
®u#

$
¯ 0. (3.18)

As an illustration of this formalism we prove the result that the product of the
distances of the foci from a tangent is the same for all tangents (and thus equal to the
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square of the minor axis of the ellipse). Let u
"
xu

#
yu

$
¯ 0 be a tangent to the

ellipse. The distances of the foci from this line are (³u
"
cu

$
)}(u#

"
u#

#
)"/#, respectively.

The product of distances is then (u#

$
®u#

"
c#)}(u#

"
u#

#
), which equals b# when [u

"
, u

#
, u

$
]

satisfies (3.18). A similar argument holds for a hyperbola. It follows from replacing b
by ib in the preceding.

We now inquire whether the ellipse has any isotropic tangents, i.e. whether
Φ[1,³i, u

$
]¯ 0 can be satisfied for any choice of u

$
. Substitution into the equation

gives u
$
¯³c. Thus, there are four isotropic tangents :

[t
"
]¯ [1, i, c] ; [t

#
]¯ [1, i,®c] ; [t

$
]¯ [1,®i, c] ; [t

%
]¯ [1,®i,®c]. (3.19)

These four lines intersect pairwise at four points (besides I and J) :

(x
"$

)¯ (®c, 0, 1) ; (x
"%

)¯ (0, ic, 1) ; (x
#$

)¯ (0,®ic, 1) ; (x
#%

)¯ (c, 0, 1). (3.20)

We see that two of these points are in the affine plane, precisely at the focal points of
the ellipse. This is a general result : the focal points of a conic are the real intersections
of the isotropic tangents.

Let us write this out for the parabola. Start from y¯kx#. Homogenize:
kx#

"
®x

#
x
$
¯ 0. The line equation is : u#

"
®4ku

#
u
$
¯ 0. There are two isotropic tangents,

[1, i,®i}4k] and [1,®i, i}4k] ; the line at infinity is also a tangent. There is, thus, just
one finite point of intersection, (0, 1}4k, 1), which, indeed, corresponds to the focus of
the parabola in the affine plane.

In the general case, for a curve of class m, one defines the foci to be the intersections
of the isotropic tangents. Except for degeneracies, there will be m# foci for such a curve.
Of these m will be real and m#®m complex.

In general, we must solve the equation Φ[1,³i, u
$
]¯ 0 to find the isotropic tangents.

Assuming Φ is real, i.e. a polynomial in u
"
, u

#
, u

$
with real coefficients, we see that if

u
$
¯®z¯®(xiy) is a solution of Φ[1, i,®z]¯ 0, then z*¯x®iy will solve

Φ[1,®i,®z*]¯ 0.

The intersection of the two lines [1, i,®(xiy)] and [1,®i,®(x®iy)] is easily
calculated to be (x, y, 1), a finite, real focus. All the real foci may be found in this way,
and we have the result that for a real cur�e of class m the foci in the affine plane,
thought of as the complex z-plane, may be found from the equation

Φ[1, i,®z]¯ 0. (3.21)

It is this result, due to Plu$ cker, that Siebeck exploits in his theorem, since the challenge
is now simply to write the equation for the roots}stagnation points in such a way that
it can be reinterpreted as determining the foci of a curve of the appropriate class.

3.6. Siebeck’s theorem

Returning to (2.2) we wish, then, to write P(z) in the form Φ[1, i,®z]. We set

Lα[u
"
, u

#
, u

$
]¯®ξα u

"
®ηα u

#
®u

$
, (3.22)

where the αth vortex is at zα ¯ ξαiηα, α¯ 1,…,N, so that Lα[1, i,®z]¯ z®zα (here
we use Greek letters for the Cartesian coordinates of the vortices in order to avoid
confusion with the coordinates x

"
, x

#
and x

$
in P#). Consider

Φ[u
"
, u

#
, u

$
]¯Γ

"
L

#
[u

"
, u

#
, u

$
]L

$
[u

"
, u

#
, u

$
]…L

N
[u

"
, u

#
, u

$
]

Γ
#
L

"
[u

"
, u

#
, u

$
]L

$
[u

"
, u

#
, u

$
]…L

N
[u

"
, u

#
, u

$
]…

Γ
N

L
"
[u

"
, u

#
, u

$
]L

#
[u

"
, u

#
, u

$
]…L

N−"
[u

"
, u

#
, u

$
]¯ 0. (3.23)
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This polynomial is constructed such that the term with pre-factor Γα contains the
product of all Lβ[u] except β¯α. Clearly this is a polynomial equation in the u of
degree N®1, i.e. it defines a curve of class N®1. All coefficients are real (cf. (3.22)),
so that the equation for the real, finite foci is

Φ[1, i,®z]¯P(z)¯ 0. (3.24)

Thus, the stagnation points may be interpreted as the real foci of the curve given by
(3.23).

Furthermore, the curve has all the lines connecting the vortices pairwise as tangents,
for the line through vortices α and β has coordinates (cf. (3.6))

[uαβ]¯ [ηα®ηβ,®(ξα®ξβ), ξα ηβ®ξβ ηα], (3.25)
and both

Lα[uαβ]¯®ξα(ηα®ηβ)ηα(ξα®ξβ)®(ξα ηβ®ξβ ηα)¯ 0, (3.26a)
and

Lβ[uαβ]¯®ξβ(ηα®ηβ)ηβ(ξα®ξβ)®(ξα ηβ®ξβ ηα)¯ 0. (3.26b)

Since every term in Φ contains at least one of these as a factor, it follows that

Φ[uαβ]¯ 0 (3.27)

for all pairs (α,β). All the lines connecting vortices pairwise are thus tangent to (3.23).
The points of tangency may be found from the developments in §3.2. We are

instructed to differentiate Φ with respect to u
"
, u

#
and u

$
, and substitute the line

coordinates, [uαβ], for the tangent in question. Calculating ¥Φ}¥u
"
we note that we only

need to differentiate the terms containing Γα and Γβ – all the other terms vanish when
we substitute [uαβ], since they will contain an undifferentiated factor Lα or Lβ. We find

¥Φ
¥u

"

[uαβ]¯®(Γα ξβΓβ ξα) 0
γ1α,β

Lγ [uαβ], (3.28a)

¥Φ
¥u

#

[uαβ]¯®(Γα ηβΓβ ηα) 0
γ1a,b

Lγ [uαβ], (3.28b)

¥Φ
¥u

$

[uαβ]¯®(ΓαΓβ) 0
γ1α,β

Lγ [uαβ]. (3.28c)

Dividing by the common factor (the product of all Lγ with γ1α, β evaluated for the
line coordinates [uαβ] – this quantity is non-zero unless three vortices are on a line), we
see that the point of tangency is the point

z(S)αβ ¯
Γα zβΓβ zα

ΓαΓβ

(3.29)

in the affine plane. This is the stagnation point for the flow produced by the two
vortices α and β ignoring all the others.

This completes the proof of Siebeck’s theorem, which in our context reads: the
stagnation points of the flow induced by N point �ortices on the infinite plane are the foci
of the cur�e (3.23) of class N®1, that touches each line connecting two �ortices at the
stagnation point of the flow produced by these two �ortices ignoring all others.

We now turn to particular cases.

4. The case of three vortices

Let us first note that the case of two vortices is trivial. Siebeck’s curve has the
equation

(Γ
"
ξ
#
Γ

#
ξ
"
) u

"
(Γ

"
η
#
Γ

#
η
"
) u

#
(Γ

"
Γ

#
) u

$
¯ 0 (4.1)
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II

P

I

III

1

2

3

F 2. Illustration of the definition of triangular coordinates of an arbitrary point P relative
to the vortex triangle 123. The regions I, II, and III, discussed in the text, are indicated.

in line coordinates. This is the equation for the point (1.7), the coordinates of which
appear as the coefficients of u

"
, u

#
, u

$
, i.e. (4.1) is the equation for all lines passing

through this point (a curve in line coordinates of class 1 corresponds to a curve in point
coordinates of order 0). Alternatively, the stagnation point is determined by setting
[u

"
, u

#
, u

$
]¯ [1, i, ®z] in (4.1), which just gives the result (1.7).

4.1. Triangular coordinates

The case of three vortices is considerably richer. We know that the stagnation points
are the foci of a conic, a curve of class 2, and we need to choose coordinates that
facilitate the discussion of this curve. Assuming the vortices are not collinear, we may
introduce new coordinates (X

"
, X

#
, X

$
) in P# via the equations

x
"
¯ ξ

"
X

"
ξ

#
X

#
ξ

$
X

$
, (4.2a)

x
#
¯ η

"
X

"
η

#
X

#
η

$
X

$
, (4.2b)

x
$
¯X

"
X

#
X

$
. (4.2c)

Any finite point in P#, i.e. any point with x
$
1 0, will then have coordinates (X

"
, X

#
, X

$
)

with a sum that is different from zero. Since we are allowed to rescale, we choose
to work with triples (X

"
, X

#
, X

$
) that either have X

"
X

#
X

$
¯ 1, or that correspond

to points on the line at infinity, i.e. have X
"
X

#
X

$
¯ 0. The benefit of this

convention is that (X
"
, X

#
, X

$
), when all three coordinates are real, may be interpreted

as the triangular coordinates of a point in the plane based on the triangle spanned by
the three vortices.† Thus, if a point P in the plane is connected to the vortices 1, 2 and
3, and the ratio of the areas of ^12P, ^23P, and ^31P to ^123 itself, all calculated
as signed quantities depending on orientation, are denoted X

"
, X

#
and X

$
, respectively,

we always have X
"
X

#
X

$
¯ 1. The construction is illustrated in figure 2 for a case

in which ^12P, ^23P and ^123 (and thus X
"
ad X

$
) are all positive, whereas ^31P

(and thus X
#
) is negative.

† The treatise by Ferrers (1866) is concerned with trilinear and triangular coordinates and their
geometrical applications; for an informal discussion of applications of such coordinates in fluid
mechanics see Aref (1992).
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A point (ξ, η) in the affine plane corresponds to (ξ, η, 1) in P#, and has triangular
coordinates

X
"
¯

ξη
#
®ξ

#
ηξ

#
η
$
®ξ

$
η
#
ξ

$
η®ξη

$

ξ
"
η
#
®ξ

#
η
"
ξ

#
η
$
®ξ

$
η
#
ξ

$
η
"
®ξ

"
η
$

, (4.3a)

X
#
¯

ξ
"
η®ξη

"
ξη

$
®ξ

$
ηξ

$
η
"
®ξ

"
η
$

ξ
"
η
#
®ξ

#
η
"
ξ

#
η
$
®ξ

$
η
#
ξ

$
η
"
®ξ

"
η
$

, (4.3b)

X
$
¯

ξ
"
η
#
®ξ

#
η
"
ξ

#
η®ξη

#
ξη

"
®ξ

"
η

ξ
"
η
#
®ξ

#
η
"
ξ

#
η
$
®ξ

$
η
#
ξ

#
η
"
®ξ

"
η
$

. (4.3c)

The denominator in these expressions is twice the signed area of ^123.
There is a corresponding transformation of line coordinates :

U
"
¯ ξ

"
u
"
η

"
u
#
u

$
, (4.4a)

U
#
¯ ξ

#
u
"
η

#
u
#
u

$
, (4.4b)

U
$
¯ ξ

$
u
"
η

$
u
#
u

$
, (4.4c)

to ensure that u
"
x
"
u

#
x
#
u

$
x
$
¯U

"
X

"
U

#
X

#
U

$
X

$
.

The inverse transformation is

u
"
¯

U
"
η
#
®U

#
η
"
U

#
η
$
®U

$
η
#
U

$
η
"
®U

"
η
$

ξ
"
η
#
®ξ

#
η
"
ξ

#
η
$
®ξ

$
η
#
ξ

$
η
"
®ξ

"
η
$

, (4.5a)

u
#
¯

ξ
"
U
#
®ξ

#
U
"
ξ

#
U
$
®ξ

$
U
#
ξ

$
U
"
®ξ

"
U
$

ξ
"
η
#
®ξ

#
η
"
ξ

#
η
$
®ξ

$
η
#
ξ

$
η
"
®ξ

"
η
$

, (4.5b)

u
$
¯

(ξ
"
η
#
®ξ

#
η
"
)U

$
(ξ

#
η
$
®ξ

$
η
#
)U

"
(ξ

$
η
"
®ξ

"
η
$
)U

#

ξ
"
η
#
®ξ

#
η
"
ξ

#
η
$
®ξ

$
η
#
ξ

$
η
"
®ξ

"
η
$

. (4.5c)

The line at infinity, [u]¯ [0, 0, 1], has coordinates [U]¯ [1, 1, 1], and thus corresponds
to the ‘unphysical ’ condition X

"
X

#
X

$
¯ 0.

The triangular coordinates of the vortices are, of course, (X )¯ (1, 0, 0) for vortex
1; (0, 1, 0) for 2; (0, 0, 1) for 3. The line coordinates of the sides are [U ]¯ [0, 0, 1] for
the side 12; [1, 0, 0] for 23; [0, 1, 0] for 31. In these coordinates the expression for Φ
simplifies considerably, as is seen by comparing (4.4) to (3.22). The line conic (3.23)
becomes

Γ
"
U
#
U
$
Γ

#
U
"
U
$
Γ

$
U
"
U
#
¯ 0. (4.6)

Differentiating we find the point conic as follows:†

X
"
¯Γ

#
U
$
Γ

$
U
#
, X

#
¯Γ

$
U
"
Γ

"
U
$
, X

$
¯Γ

"
U
#
Γ

#
U
"
. (4.7)

Solving these for the U in terms of the X gives

2Γ
#
Γ

$
U
"
¯®Γ

"
X

"
Γ

#
X

#
Γ

$
X

$
, (4.8a)

2Γ
$
Γ

"
U
#
¯Γ

"
X

"
®Γ

#
X

#
Γ

$
X

$
, (4.8b)

2Γ
"
Γ

#
U
$
¯Γ

"
X

"
Γ

#
X

#
®Γ

$
X

$
. (4.8c)

† It is not difficult to see that the procedure given in §3.2 for transforming between line and point
coordinates of a curve carries over to the new variables X and U. Statements involving actual values
of coordinates, however, need to be carefully reinterpreted. For example, the coordinates of the
circular points at infinity, §3.4, are more complicated in terms of the variables X than in terms of the
original variables x.
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Substituting these expressions in the equation for the line conic gives the equation for
the point conic in triangular coordinates :

(Γ
"
X

"
)#(Γ

#
X

#
)#(Γ

$
X

$
)#¯ 2Γ

"
Γ

#
X

"
X

#
2Γ

#
Γ

$
X

#
X

$
2Γ

$
Γ

"
X

$
X

"
. (4.9)

The points of tangency with the triangle spanned by the vortices are

(X
#$

)¯ 00,
Γ

$

Γ
#
Γ

$

,
Γ

#

Γ
#
Γ

$

1 , (4.10a)

(X
$"

)¯ 0 Γ
$

Γ
$
Γ

"

, 0,
Γ

"

Γ
$
Γ

"

1 , (4.10b)

(X
"#

)¯ 0 Γ
#

Γ
"
Γ

#

,
Γ

"

Γ
"
Γ

#

, 01 . (4.10c)

We see that the three lines
Γ

"
X

"
¯Γ

#
X

#
¯Γ

$
X

$
, (4.11a)

or, in line coordinates,

[U ]¯ [Γ
"
,®Γ

#
, 0] ; [®Γ

"
, 0,Γ

$
] ; [0,Γ

#
,®Γ

$
] ; (4.11b)

connect a vortex to the point of tangency on the opposing side (4.10). The lines (4.11)
are concurrent at a point T with coordinates

(X(T)

"
,X(T)

#
,X(T)

$
)¯ (Γ

#
Γ

$
,Γ

$
Γ

"
,Γ

"
Γ

#
)}(Γ

"
Γ

#
Γ

#
Γ

$
Γ

$
Γ

"
) (4.12)

(which is at infinity if the harmonic mean of the vortex strengths vanishes).
The conic (4.9) is, except for a change in notation, the same as was considered in an

earlier analysis of three-vortex motion (see Aref 1979, equation (14)). It follows,
therefore, that the classification of the nature of the conic that has the stagnation points
as foci in terms of the values of the vortex strengths is exactly the classification of the
motion itself found in the earlier work.† In particular, the stagnation point conic is

an ellipse if Γ
"
Γ

#
Γ

$
(Γ

"
Γ

#
Γ

$
)" 0, (4.13a)

a parabola if Γ
"
Γ

#
Γ

$
¯ 0, (4.13b)

a hyperbola if Γ
"
Γ

#
Γ

$
(Γ

"
Γ

#
Γ

$
)! 0. (4.13c)

The type of this conic depends only on the vortex strengths, and thus is invariant in
time (except for the degeneracy that occurs when the vortices are on a line and the conic
collapse to a line segment). Indeed, the equation of the inscribed conic in triangular
coordinates, (4.9), is invariant with respect to the shape of the vortex triangle, and thus
a fortiori the classification, (4.13), of whether it is an ellipse, a parabola or a hyperbola
will be invariant with respect to the evolution of that triangle in time as the motion
unfolds.

Our results thus far establish several qualitative differences between the (two)
elliptic, parabolic and hyperbolic cases regarding the location of stagnation points. The
lines connecting the vortices pairwise divide the plane into seven regions. Without loss
of generality we restrict consideration to the case Γ

"
&Γ

#
" 0, since other choices of

signs follow by re-labelling of indices and}or reflection in the flow plane. Then, in
figure 2, the stagnation points in the elliptic cases will either both be in region I (for

† The formal way to decide this is to write out the coefficient matrix of the quadratic (4.9), convert
back to variables x

"
, x

#
, x

$
via (4.2) and consider the determinant of the appropriate minor (cf. the

text following (3.9)).
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3

1 2

T

C

X31 X23

X12

F 3. Relative situation of vortices (1, 2 and 3), Siebeck’s conic with centre C, the three points
of tangency, X

"#
, X

#$
, X

$"
and the point of concurrency, T, of 1X

#$
, 2X

$"
, and 3X

"#
. The lines 1C, 2C

and 3C bisect X
$"

X
"#

, X
"#

X
#$

and X
#$

X
$"

, respectively.

Γ
$
" 0), or in region III (for Γ

$
! 0) since the ellipse will be situated in one of these two

regions (see figure 3 for an example when Γ
$
! 0). In the hyperbolic case there will be

one stagnation point in region II and one in region III since the hyperbola will have
a branch in each of these two regions. Thus, in this case, so long as the vortices are not
collinear, there must always be two distinct stagnation points, whereas in the elliptic
case the two stagnation points can coincide when the ellipse degenerates to a circle. In
the parabolic case, the single stagnation point will always be in region III since this
is where the parabola will be located. This immediate consequence of the geometric
characterization of stagnation points is not obvious if one simply proceeds to find the
roots of the polynomial (2.2) algebraically. For the case of positive vortex strengths the
Gauss–Lucas theorem (cf. Marden 1949, Chap. II) implies that the stagnation points
must lie within the triangle spanned by the vortices. The location as foci of an inscribed
ellipse is clearly much sharper.

4.2. Elliptic and hyperbolic cases

In the elliptic and hyperbolic case let the triangular coordinates of the two stagnation
points be (X

"
, X

#
, X

$
) and (X�

"
, X�

#
, X�

$
), respectively. From (2.8) we deduce that

X
"
X�

"
¯

Γ
#
Γ

$

Γ
"
Γ

#
Γ

$

, X
#
X�

#
¯

Γ
$
Γ

"

Γ
"
Γ

#
Γ

$

, X
$
X�

$
¯

Γ
"
Γ

#

Γ
"
Γ

#
Γ

$

. (4.14)

The centre of the conic in Siebeck’s theorem, C, must then have triangular coordinates

(X(C)

"
,X(C)

#
,X(C)

$
)¯ 0 Γ

#
Γ

$

2(Γ
"
Γ

#
Γ

$
)
,

Γ
$
Γ

"

2(Γ
"
Γ

#
Γ

$
)
,

Γ
"
Γ

#

2(Γ
"
Γ

#
Γ

$
)1 . (4.15)

These coordinates are also invariant with respect to the actual configuration of the
vortices (i.e. the shape of the triangle) and – since they depend only on the vortex
strengths – with respect to the motion.

It is easy to verify that the line connecting vortex 1 to C bisects the line connecting
the points of tangency (X

$"
) and (X

"#
), with corresponding results by permutation of

indices. Figure 3 summarizes the relative situation and role of the points of tangency
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1

2

3

(0,1,1)M

C

V

[0, –C3, C2]

[C2 – C3, C3 – C1, C1 – C2]

F 4. Geometry of the midpoint, M, centre of vorticity, V, and centre of Siebeck’s conic, C.
Note that M, V and C are collinear and CM :MV¯ 1:2.

and the points T and C. It is important not to confuse the points T (point of
concurrency of lines connecting vortices to points of tangency) and C (centre of
Siebeck’s conic).

Since the centre of Siebeck’s conic is situated at the midpoint of the line joining the
two stagnation points, we note from (2.9) that this point must be on the line through
the centroid of the vortex configuration and the centre of vorticity. Alternatively, we
may verify directly that the line [U]¯ [Γ

#
®Γ

$
, Γ

$
®Γ

"
, Γ

"
®Γ

#
] passes through the

centroid, (X )¯ (1, 1, 1), the centre of vorticity, (Γ
"
, Γ

#
, Γ

$
)}(Γ

"
Γ

#
Γ

$
), and the

point C given by (4.15). Designating the complex position of C by z
C
, and recalling our

earlier definitions of z
M

and z
V

from §2, we have

z
C

¯ $

#
z
M

®"

#
z
V
. (4.16)

This relation shows, further, that the midpoint splits the line segment connecting the
centre of the conic to the centre of vorticity in the ratio 1:2. Since the midpoint itself
splits each median in the vortex triangle in this ratio, the following construction of the
point C presents itself (figure 4). From the instantaneous vortex positions and the
vortex strengths determine the centre of vorticity. Draw the line [Γ

#
®Γ

$
, Γ

$
®Γ

"
,

Γ
"
®Γ

#
] through the midpoint of the triangle and the centre of vorticity (we list the

coordinates so that the construction can be verified algebraically). Join any vortex, e.g.
1 as shown in figure 4, to the centre of vorticity, producing a line with coordinates
[0, ®Γ

$
, Γ

#
]. Through the midpoint (0, 1, 1) of the opposite side in the vortex triangle

draw the line parallel to [0, ®Γ
$
, Γ

#
]. This is the line [Γ

#
®Γ

$
, Γ

#
Γ

$
, ®(Γ

#
Γ

$
)] –

‘parallelism’ in triangular coordinates means that two lines intersect on the line
[1, 1, 1]. Point C, the centre of Siebeck’s conic, is then found at the intersection of
[Γ

#
®Γ

$
, Γ

$
®Γ

"
, Γ

"
®Γ

#
] and [Γ

#
®Γ

$
, Γ

#
Γ

$
, ®(Γ

#
Γ

$
)], as is easily verified.

From the result on the product of the distances of the foci from a tangent (see §3.5
following (3.18)) we have

X
"
X�

"

d #

#$

¯
X

#
X�

#

d #

$"

¯
X

$
X�

$

d #

"#

, (4.17)

where d
"#

, d
#$

and d
$"

are the lengths of the sides of the triangle (using an obvious
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notation). The common value of the expressions in (4.17) is positive in the elliptic case
and negative in the hyperbolic case.

Combining (4.14) and (4.17) the triangular coordinates of the stagnation points of
three vortices must solve the system of equations

1

d #

#$

²(Γ
"
Γ

#
Γ

$
)X

"
®(Γ

#
Γ

$
)´X

"

¯
1

d #

$"

²(Γ
"
Γ

#
Γ

$
)X

#
®(Γ

$
Γ

"
)´X

#

¯
1

d #

"#

²(Γ
"
Γ

#
Γ

$
)X

$
®(Γ

"
Γ

#
)´X

$
, (4.18a)

with
X

"
X

#
X

$
¯ 1. (4.18b)

Ferrers (1866, Chap. VI, §33) finds equations equivalent to (4.18) using the theory of
reciprocal polars.

In order to solve (4.18) we set the common value of the three expressions to
k(Γ

"
Γ

#
Γ

$
). Then we find

X
"
¯X(C)

"
³((X(C)

"
)#kd #

#$
)"/#, (4.19a)

X
#
¯X(C)

#
³((X(C)

#
)#kd #

$"
)"/#, (4.19b)

X
$
¯X(C)

$
³((X(C)

$
)#kd #

"#
)"/#. (4.19c)

It follows from these that

³((X(C)

"
)#kd #

#$
)"/#³((X(C)

#
)#kd #

$"
)"/#³((X(C)

$
)#kd #

"#
)"/#¯ 0. (4.20)

Squaring twice (4.20) yields a quadratic equation for k :

k#(d %

"#
d %

#$
d %

$"
®2d #

"#
d #

#$
®2d #

#$
d #

$"
®2d #

$"
d #

"#
)

2k[d #

"#
²(X(C)

$
)#®(X(C)

"
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#
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$
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#
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$
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"
)#´]

(X(C)

"
)%(X(C)

#
)%(X(C)

$
)%®2(X(C)

"
)#(X(C)

#
)#®2(X(C)

#
)#(X(C)

$
)#®2(X(C)

$
)#(X(C)

"
)#¯ 0.
(4.21)

The coefficient of k# in (4.21) is (4∆)# by Hero’s formula for the area of a triangle. The
constant term can be simplified to ®Γ

"
Γ

#
Γ

$
}(Γ

"
Γ

#
Γ

$
)$. The coefficient of k is

²d #

"#
(Γ

"
Γ

#
®Γ

$
Σ)d #

#$
(Γ

#
Γ

$
®Γ

"
Σ)d #

$"
(Γ

$
Γ

"
®Γ

#
Σ)´}Σ#, (4.22)

where the abbreviation Σ¯Γ
"
Γ

#
Γ

$
has been used.

Equation (4.21) will, in general, have two real solutions for k. For each of these
(4.19) with the two sign choices provides as many as eight solutions. From these 16
triples (X

"
, X

#
, X

$
) only two are acceptable as solutions for the stagnation points. We

shall not pause here to sort out the signs in (4.19). We do make the point, however, that
the triangular coordinates of the stagnation points will not for a generic choice of Γ

"
,

Γ
#
and Γ

$
conform to any simple scaling or similarity relation. Surprisingly, such scaling

does arise in the parabolic case discussed below.
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The hyperbolic case Γ
"
¯Γ

#
¯®Γ

$
¯Γ is so simple that a complete discussion may

be given. We see from (4.10) that two of the points of tangency are at infinity, i.e. the
lines 23 and 31 are the asymptotes of the hyperbola (4.9). The centre of this conic, then,
is vortex 3, as given by (4.15). Equations (4.18) simplify to

X#

"

d #

#$

¯
X#

#

d #

$"

¯
X#

$
®2X

$

d #

"#

. (4.23)

The first equality shows that the stagnation points are located on the bisector of x231.
With this information one can either return to the original equation (2.1) or rework the
second equality in (4.19) to show that the distance from vortex 3 to either stagnation
point is (d

#$
d
$"

)"/#, the geometric mean of the two sides of the triangle that are along
the asymptotes of Siebeck’s conic.

4.3. The parabolic case

In the parabolic case the first term in the curly brackets in (4.18a), vanishes, and for
the single stagnation point we now have†

Γ
"
X

"
¯kd #

#$
; Γ

#
X

#
¯kd #

$"
; Γ

$
X

$
¯kd #

"#
. (4.24)

In (4.24) k is the common value of the expressions (4.18a), and we have used that the
vortex strengths sum to zero. Multiplying by Γ

#
Γ

$
, Γ

$
Γ

"
, Γ

"
Γ

#
, respectively, adding

and using (4.18b) we obtain

k¯
Γ

"
Γ

#
Γ

$

Γ
"
Γ

#
d #

"#
Γ

#
Γ

$
d #

#$
Γ

$
Γ

"
d #

$"

. (4.25)

Thus the triangular coordinates of the stagnation point in the parabolic case are

(X(S)

"
,X(S)

#
,X(S)

$
)¯

(Γ
#
Γ

$
d #

#$
,Γ

$
Γ

"
d #

$"
,Γ

"
Γ

#
d #

"#
)

Γ
"
Γ

#
d #

"#
Γ

#
Γ

$
d #

#$
Γ

$
Γ

"
d #

$"

. (4.26)

The denominator is a constant of the motion (cf. Aref 1979). Hence, we have the
‘similarity ’ result that in the parabolic case the triangular coordinates of the stagnation
point, each scaled by the square of the corresponding side in the �ortex triangle, are
constant during the motion. This result is quite remarkable, since the stagnation point
is not invariant in an Eulerian or Lagrangian sense, and does not, in general, have a
fixed position relative to the vortices.

When the denominator in (4.26) vanishes, there is no finite stagnation point. This
may be seen either by referring to the explicit solution available for this case (Rott
1989; Aref 1989),‡ or simply by noting that the linear impulse must also vanish, and
we are in the situation discussed following (2.6) in which P(z) reduces to a constant for
N¯ 3.

Another way to state the result (4.26) arises from the expressions X(S)

"
¯ h(S)

"
d
#$

}2∆,

† One might worry that (4.24) arises from (4.18) by using (4.14), and this condition is ambiguous
when one focus is at infinity. However, an independent derivation shows that (4.24) are, indeed, the
correct equations for the focus in the parabolic case.

‡ This solution may be written z
"
¯ a(Γ

$
}Γ

#
®Γ

#
}Γ

$
), z

#
¯ a(Γ

"
}Γ

$
®Γ

$
}Γ

"
), z

$
¯

a(Γ
#
}Γ

"
®Γ

"
}Γ

#
), where a is a scale parameter, i.e. the vortices are situated on a line, and rotate with

angular velocity Γ
"
Γ

#
Γ

$
}2πa(Γ

"
Γ

#
Γ

#
Γ

$
Γ

$
Γ

"
) about the origin of coordinates, but the velocity

at the origin does not vanish. If Γ
"
¯Γ

#
and vortices 1 and 2 are placed on either side of vortex 3 at

equal distances from it, the configuration will rotate about vortex 3, which will remain stationary.
This kind of stagnation point is not covered by the developments in this paper.
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etc., where h(S)

"
denotes the distance of the stagnation point from the side 23.

Substituting this form for the triangular coordinates into (4.26), we obtain

0h(S)

"

d
#$

,
h(S)

#

d
$"

,
h(S)

$

d
"#

1¯
2∆(Γ

#
Γ
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Γ
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Γ
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Γ

#
d #

"#
Γ

#
Γ

$
d #
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Γ

$
Γ

"
d #

$"

. (4.27)

Hence, the dimensionless ratio of the distance of the stagnation point from a side to
the length of that side varies proportionally to the vortex triangle area.

It is not difficult to show (cf. Ferrers 1866, Art. 6) that the equation for the
circumscribed circle of the vortex triangle is

d #

"#
X

"
X

#
d #

#$
X

#
X

$
d #

$"
X

$
X

"
¯ 0. (4.28)

We see that the stagnation point (4.26) is situated on this circle.

5. Streamline topology

We now turn to the second mode of analysis of the flow pattern surrounding a set of
discrete vortices – a topological exploration of possible streamline patterns. The
vortices themselves must be encircled by a system of nested streamlines. The stagnation
points, on the other hand, are points of self-intersection of streamlines. Since we have
seen how to geometrically characterize the stagnation points given the location and
strength of the vortices, it is natural to explore how to connect these stagnation points
by streamlines to determine the overall, instantaneous flow pattern. As we shall see, for
a small number of vortices this leads to a relatively small set of topologically distinct
possibilities. We shall discuss the cases N¯ 2 and 3 in detail, but the methodology used
can, in principle, be extended to larger N.

For the case of two point vortices it is not difficult to see that the flow topology must
be invariant as the motion proceeds: the location of the vortices and the stagnation
point simply rotate rigidly about the centre of vorticity, and so the entire streamline
configuration must also rotate about this point.

For two vortices there are three distinct streamline topologies with a single
stagnation point, as indicated in figure 5. There is just one pattern for two opposite
vortices, figure 5(d ).

5.1. Streamline topologies for three �ortices

For three vortices the situation is richer. Let us first consider the elliptic and hyperbolic
cases for which there are two stagnation points. Since the sum of the vortex strengths
is different from zero, the far-field velocity at any instant is like the flow due to a single
vortex of strength equal to this sum. In particular, no streamlines go off to infinity. It
then follows that the streamlines must form a pattern in which the two stagnation
points are connected, either to themselves or to each other, and a simple enumeration
of the topological possibilities accounts for the different types of flow.

Borrowing from the dynamical systems nomenclature we designate a streamline loop
connecting a stagnation point to itself as a homoclinic loop, and we designate two
streamline segments connecting two stagnation points as a heteroclinic loop.
Heteroclinic loops occur only if the streamfunction of the flow takes the same value at
both stagnation points. This will not generally be the case, and so signifies a special
vortex configuration at which a bifurcation of the streamline pattern takes place. The
typical streamline topology will consist solely of homoclinic loops.

In order to find these, we return to figure 5 and consider the pattern 5(a) or 5(b) to
be ‘substituted’ for either positive vortex in 5(a). This gives the streamline topologies
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F 5. Streamline topologies for flow about two vortices. For non-zero net circulation there is one
stagnation point : (a) two positive vortices ; (b) a vortex of either sign with the sum of strengths
positive ; (c) a vortex of either sign with the sum of strengths negative. In (d ) the vortices are opposite.
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F 6. Streamline topologies for flow about three vortices with non-zero net circulation,
Γ

"
Γ

#
Γ

$
1 0. The derivation of the different cases is discussed in the text. Patterns (a)–( f ) have

no heteroclinic loops and are the ‘generic ’ cases. Patterns (g)–(k) have one heteroclinic loop, (l ) has
three. Streamline topologies (a, e, f, g, j, k) are for the elliptic cases ; (b, c, d, h, i, l ) for the hyperbolic.

in figure 6(a, b). In generating from figure 5(b) a possible streamline topology for three
vortices our sign convention dictates that the pattern 5(a) can be substituted for the
positive vortex, leading to figure 6(c), but not the pattern 5(b), since that would
produce a pattern with two negative vortices. However, the pattern 5(c) can be
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F 7. Streamline topologies for flow about three vortices with non-zero net circulation,
Γ

"
Γ

#
Γ

$
1 0 in the degenerate cases with a single stagnation point ; (a), (c) are elliptic cases, (b),

(d ) hyperbolic.

substituted for the negative vortex in 5(b) leading to figure 6(d ). Again, in figure 5(c)
we may substitute 5(a) for the positive vortex, producing figure 6(e), or 5(c) for the
negative vortex, producing figure 6( f ). All these patterns have four homoclinic loops,
and exhaust the possibilities for patterns with all homoclinic loops.

If we start from figure 5(a) and somewhere along either homoclinic loop ‘pinch off’
a new homoclinic loop, we produce the streamline topologies in figures 6(g) and 6(h)
depending on whether the ‘pinched off’ loop is outside or inside one of the existing
homoclinic loops. A similar transformation applied to figure 5(b) – where we are only
allowed to place a loop outside the positive vortex loop or inside the negative vortex
loop, since we otherwise would produce a second negative vortex – yields figure 6(i)
(and a repeat of 6h). From figure 5(c) we similarly produce figures 6( j) and 6(k). All
these streamline patterns have two homoclinic loops and one heteroclinic loop.
Conversely, by letting a homoclinic loop in figure 6(g–k) shrink to a point (if allowed
by the presence of the remaining two vortices) we reproduce one of the streamline
topologies from figure 5. Finally, figure 6(l ) shows the single possibility when there are
no homoclinic loops. These 12 streamline patterns are the only ones possible for three
vortices on the infinite plane when the sum of strengths is non-zero. By considering the
sense of the far-field flow in these diagrams we see that figure 6(a, e, f, g, j, k)
corresponds to elliptic cases, whereas figure 6(b, c, d, h, i, l ) corresponds to hyperbolic
cases.

There are four degenerate cases in which there is only a single stagnation point,
where three streamline branches divide the plane into six sectors each of opening angle
π}3. They can be determined by drawing the three streamline segments close to the
degenerate stagnation point, and then connecting these segments to form loops in all
possible ways (consistent with our sign convention on vortex strengths). The resulting
four patterns are shown in figure 7.

There is a simple algebraic condition, which follows from (4.14) and (4.17), for when
such degeneracy occurs. In the elliptic case the stagnation points can coincide because
Siebeck’s conic – which is an ellipse in this case – can degenerate to a circle. Thus,
setting (X

"
, X

#
, X

$
)¯ (X�

"
, X�

#
, X�

$
)¯ (X(C)

"
, X(C)

#
, X(C)

$
), we find the condition

0Γ#
Γ

$

d
#$

1#¯ 0Γ$
Γ

"

d
$"

1#¯ 0Γ"
Γ

#

d
"#

1#, (5.1)
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F 8. Streamline topologies for flow about three vortices with zero net circulation,
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which determines the shape of the vortex triangle. Since Γ
"
Γ

$
and Γ

#
Γ

$
are of the

same sign in this case, (5.1) may be written

Γ
#
Γ

$

d
#$

¯
Γ

$
Γ

"

d
$"

¯³
Γ

"
Γ

#

d
"#

, (5.2)

where the sign in the last term is the sign of Γ
$
. Thus, if the vortices form an equilateral

triangle, the two stagnation points will coincide if Γ
"
¯Γ

#
¯Γ

$
, but also if Γ

"
:Γ

#
:Γ

$
¯

1:1: (®3). In the former case we get the streamline pattern figure 7(a), in the latter
figure 7(c).

In the hyperbolic case the two stagnation points (alias foci of a hyperbola) can only
coincide if the vortices are collinear. Hence, the patterns in figures 7(b) and 7(d ) must
arise from collinear vortices. In particular, in the collinear state the negative vortex
must always be situated between the positive vortices in order for a degenerate
stagnation point to arise.

The streamline patterns for the parabolic case are constructed by a similar method
of ‘substitution’ starting from the pattern in figure 5(d ) for two vortices of net
circulation zero. We can substitute the pattern 5(a) for the positive vortex in 5(d )
resulting in figure 8(a). We can substitute 5(c) for the negative vortex in 5(d ) producing
figure 8(b). We can ‘pinch off’ a homoclinic loop on the single dividing streamline in
5(d ) to produce a positive vortex resulting in figure 8(c). These are the only non-
degenerate forms. However, the stagnation point at infinity in figure 5(d ) could be
degenerate, and this results in the pattern in figure 8(d ). Alternatively, the patterns in
figure 8(a–d ) can be thought of as limiting forms of the elliptic patterns in figure
6(e, f, k, j ), respectively.

It must be kept in mind that the diagrams of figures 5–8 give the possible streamline
topologies without regard to scale. When actual values are substituted for the vortex
strengths, and the diagrams are accurately constructed, the relative size of the various
loops may be quite different from what is shown in figures 5–8. We have plotted in
figure 9 some such correctly scaled streamline patterns for certain chosen vortex
positions and strengths. Two additional examples of streamline patterns ‘ to scale ’ have
already been given in figure 1.

The construction of the different streamline topologies given above assures us that
all the topologies identified in figures 5–8 will actually occur for suitable choices of
vortex positions and strengths, and shows, in principle, how to generate them. One can
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(a) (b)

(c) (d)

(e) ( f )

F 9. Streamline patterns to scale for certain combinations of vortex strengths and positions. In
each case vortices are placed on the x-axis. We list the ratio of vortex strengths from left to right,
Γ

"
:Γ

#
:Γ

$
, the coordinates (x

"
, x

#
, x

$
), and the comparison panel in figure 6: (a) 5 :3 :4, (®3, 0, 2), cf.

figure 6(a) ; (b) (®1) :1 :1, (®1, 0, 2), cf. figure 6(c) ; (c) 1.8 : (®5) :2.2, (®1.4, 0, 2), cf. figure 6( f ) ; (d )
2 :1 :2, (®1, 0, 1), cf. figure 6(g) ; (e) 1 : (®3) :1, (®1, 0, 1), cf. figure 6( j) ; ( f ) 1 : (®1) :1, (®1, 0, 1),
cf. figure 6(l ).

start from any two-vortex pattern and ‘split ’ either point vortex into two, as we did in
our topological argument. Indeed, it should be possible to produce all the patterns
using three vortices restricted to be on a line. In practice, however, if one simply draws
the streamline pattern for a set of vortex positions and strengths chosen arbitrarily,
some of the patterns in figure 6 are found to arise much more frequently than others.
Furthermore, the size of the individual loops makes some of the patterns tedious to
compute and plot. For these reasons we are content to show a sampling of patterns to
scale in figure 9.

5.2. Change of streamline topology

It is natural next to inquire into the possible changes in streamline topology as the
motion of the three vortices evolves. This question is of some interest, as we shall see,
in providing a deeper understanding of the three-vortex motion itself. The physical
importance of a change in streamline topology to processes such as fluid mixing,
unfortunately, is not entirely clear, since an instantaneous streamline is not a material
curve. A general discussion appears difficult in any event, and we have had to limit
ourselves to consideration of the special cases Γ

"
¯Γ

#
¯³Γ

$
.

For identical vortices, consider the symmetrical configurations in which the vortices
form an isosceles triangle. Number the vortices such that vortex 3 is situated on the
perpendicular bisector of the side connecting vortices 1 and 2. Then, if 3 is far from 12,
the streamline topology must clearly be of the type shown in figure 6(a), and both
stagnation points will be on the perpendicular bisector of 12 by symmetry. On the other
hand, if 3 is on or close to the line 12, the streamline topology must be that of figure
6(g), with the stagnation points located symmetrically on either side of the
perpendicular bisector of 12. It is clear that for such configurations the streamfunction
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F 10. ‘Phase diagram’ for three identical vortices (cf. Aref 1979)
with the three bifurcation lines.

assumes the same value at both stagnation points. Thus, considering the family of
isosceles triangles that arise as vortex 3 is moved along the perpendicular bisector of
12, we see that there is exactly one point at which the streamline pattern changes from
the topology of figure 6(a) to that of figure 6(g). At this cross-over point the streamline
topology is that of figure 7(a), which occurs precisely when the vortices form an
equilateral triangle.

Now, let us connect these purely kinematical results to the dynamic problem of the
motion of three identical vortices. In figure 10 we have reproduced the ‘phase diagram’
that summarizes the relative motion of the three vortices from Aref (1979, figure 2).
The distances of a point in this diagram from the three sides of the equilateral triangle
represent the squares of the corresponding sides in the actual vortex triangle. As the
vortices move, the ‘phase point ’ either orbits a ‘rounded triangle ’ curve, similar to the
special one labelled θ¯ 2 in figure 10, or oscillates back and forth on the segment of
such a rounded triangle that is within the inscribed circle. Because of the triangle
inequalities, the only physically accessible region of the diagram in figure 10 is the
interior of the inscribed circle (for additional details see Aref 1979). The parameter θ
is a measure of the amount of kinetic energy of the motion. The cases θ¯ 1 and
θ¯ 2 are special. For θ¯ 1 the vortices form an equilateral triangle that rotates like
a rigid body. For θ¯ 2 the vortices will asymptotically (i.e. as tU¢) approach a rigidly
rotating, collinear configuration.

The three line segments radiating out from the centre of the triangle in figure 10
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correspond to isosceles triangle configurations for which the streamline topology is of
the type shown in figure 6(g) : the two equal sides in the isosceles vortex triangle are
shorter than the third side. As the vortices move, the ‘phase point ’ in figure 10 will
either intersect all three of these radial lines (when 1! θ! 2), or will not intersect any
of them (when θ" 2). In the former case, the streamline topology is generally that of
figure 6(a), but three times per period of the relative motion of the vortices it bifurcates,
changing for an instant to that of figure 6(g) as the vortices form an obtuse-angled,
isosceles triangle, and then returning to the pattern figure 6(a) but with two different
vortices in the ‘figure-eight ’ streamline loop. In the latter case, the streamline topology
is always that of figure 6(a), and the same two vortices are surrounded by the ‘figure
eight ’ streamline pattern at all times. In figure 10 we have indicated the streamline
topology for each region, and numbered the constituent vortices to indicate which one
is to be found within which streamline loop.

It is interesting to recall that the orientation of the vortex triangle is invariant in the
case 1! θ! 2 (i.e. when the streamline topology undergoes repeated changes), but
switches every time the vortices become collinear when θ" 2 (although the streamline
topology is invariable) ! In the special case θ¯ 1 the vortices rotate rigidly as an
equilateral triangle and the streamline topology is that of the degenerate case in figure
7(a). For θ¯ 2 the streamline topology of the asymptotic, rotating, collinear state is
that of figure 6(g). During the approach to that state the streamline topology will be
as in figure 6(a).

The hyperbolic case of three vortices with circulations Γ
"
¯Γ

#
¯®Γ

$
proceeds

similarly. A priori we might expect to have as possibilities for the instantaneous
streamline pattern the cases labelled (b), (c), (d ), (h), (i) and (l ) in figure 6. However, of
these only (c) and (l ) are possible. The reason is that in all the other patterns one can
find a closed loop encircling the negative vortex and a positive vortex. This is
impossible since the negative vortex exactly cancels either of the positive vortices, and
no such closed loop can exist. Now we proceed as above. Consider configurations with
all three vortices on a line. If the negative vortex 3 is far away from vortices 1 and 2,
the streamline pattern clearly must be of the type in figure 6(c) with both stagnation
points on the line through the vortices. If 3 is situated somewhere between 1 and 2, we
find a streamline pattern with the topology of figure 6(l ), and stagnation points will be
symmetrically positioned above and below the line through the vortices. (These results
are consistent with our earlier observation that the stagnation points in this case are
on the bisector of x231.) We leave it to the reader to elaborate the correspondence
with the regimes of motion established in the earlier analysis of this problem (Aref
1979, figure 4).

6. Conclusions and extensions

It is possible to extend the analysis given here to the related problem of the
‘atmosphere’ of a translating vortex system, i.e. the fluid region carried along by a
translating vortex pair, first discussed by Kelvin (1867). In this problem one is again
concerned with the number and location of stagnation points in a frame of reference
following the vortices, which are in steady translation. It is possible to find a ‘Siebeck
curve’ such that these stagnation points arise as its foci. In the same coordinates as
used in §5.1 the equation of this curve is
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This curve is of class 3. It has three distinct, real foci, in general, which are the
stagnation points in the co-moving frame.

It is also possible to extend the analysis to the case of vortices in a periodic strip
(M. A. Stremler, private communication, 1997). This problem is of interest in
conjunction with the dynamics of two-dimensional jets and wakes. The velocity field
in a strip of width L is now given by

u®i�¯
1

2Li 3
N

α="

Γα cot (πL (z®zα)* (6.2)

in place of (2.1). Using the addition formula for the cotangent, one finds a stagnation
point to correspond to a root of a polynomial in tan (πz}L). The procedures of §§2–4
can now be applied in the conformally mapped plane.

Determining the number, nature and location of stagnation points for a system of
point vortices is, clearly, one of the simplest problems of its kind. The stagnation points
in this case are the roots of a certain polynomial, and calculating them for a given
configuration of vortices of known strengths is, in principle, elementary. A geometrical
characterization of the location of stagnation points, and an understanding of how
their number and position varies when the strengths and}or positions of the vortices are
changed, leads to less familiar mathematical problems and tools, such as the algebraic
geometry developed by Plu$ cker and Siebeck a century ago and the use of the complex
projective plane. Among the many results obtained the most surprising may be for the
case of three vortices of zero net circulation, where a ‘similarity law’ for the location
of the single stagnation point emerged.

The approach of this paper does not appear to be particularly useful if the number
of vortices is large, since the order of the polynomial giving Siebeck’s curve is then
unmanageably large, and the best one can do is probably to determine all stagnation
points numerically at every step of the motion. For a small number of vortices, on the
other hand, the algebraic-geometric specification of stagnation points presented here is
as precise as one can hope to achieve.

The location of stagnation points is intimately connected with the topology of the
streamline pattern of the flow induced by the vortices. The possible streamline
topologies can be found by the process, illustrated here for three vortices, of assembling
such patterns by ‘substituting’ for a vortex in a pattern with N vortices one of the
patterns for two vortices (figure 5) and thus arriving at a streamline pattern for N1
vortices. For some simple choices of the vortex strengths it was possible to describe
transitions between different streamline topologies as the vortices move.

We are indebted to Phil Boyland, Slava Meleshko, Mark Stremler, and Anders
Thorup for comments and discussion on several aspects of this work. Mark Stremler
kindly provided the program used to produce the streamline plots in figure 9. This
work was supported by National Science Foundation grant CTS-9311545.
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